지구 온난화 방지를 위하여 본 제품은 재활용 및 재사용이 가능한 포장재를 사용하였습니다. GIGABYTE는 소비자와 함께 환경을 보호합니다.
저작권
© 2016 GIGA-BYTE TECHNOLOGY CO., LTD. All rights reserved.
이 설명서에 언급된 상표는 각 소유자의 등록 상표입니다.
면책조항
이 설명서에 포함된 정보는 저작권법 보호를 받으며 GIGABYTE의 재산입니다.
이 설명서에 포함된 명세와 특징은 GIGABYTE에 의해 예고 없이 변경될 수 있습니다.
GIGABYTE의 사전 서면허가 없이는 이 문서의 일부 또는 전부를 어떤 형식이나 방법으로도
복제, 복사, 번역, 전송 또는 출판할 수 없습니다.
■ 이 제품을 올바르게 사용하려면 사용 설명서를 주의하여 읽으십시오.

메인보드 수정 버전 식별
메인보드에 있는 수정 버전 번호는 "REV: X.X." 예를 들어, "REV: 1.0."은 메인보드의 수정
버전이 1.0이라는 의미입니다. 메인보드 BIOS나 드라이버를 업데이트하거나 기술 정보를
찾을 때는 메인보드 수정 버전을 먼저 확인하십시오.
예:

메인보드수정버전
GA-H270M-DS3H
<table>
<thead>
<tr>
<th>목차</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA-H270M-DS3H 메인보드 레이아웃...4</td>
</tr>
<tr>
<td>제1장 하드웨어 설치..5</td>
</tr>
<tr>
<td>1-1 설치 주의사항...5</td>
</tr>
<tr>
<td>1-2 제품 사양...6</td>
</tr>
<tr>
<td>1-3 CPU 설치...9</td>
</tr>
<tr>
<td>1-4 메모리 설치...9</td>
</tr>
<tr>
<td>1-5 확장 카드 설치..10</td>
</tr>
<tr>
<td>1-6 뒷면 패널 커넥터..10</td>
</tr>
<tr>
<td>1-7 내부 커넥터...12</td>
</tr>
<tr>
<td>제2장 BIOS Setup...20</td>
</tr>
<tr>
<td>2-1 시작 화면...20</td>
</tr>
<tr>
<td>2-2 M.I.T..21</td>
</tr>
<tr>
<td>2-3 System..27</td>
</tr>
<tr>
<td>2-4 BIOS...28</td>
</tr>
<tr>
<td>2-5 Peripherals...31</td>
</tr>
<tr>
<td>2-6 Chipset...34</td>
</tr>
<tr>
<td>2-7 Power..35</td>
</tr>
<tr>
<td>2-8 Save & Exit...37</td>
</tr>
<tr>
<td>제3장 부록...38</td>
</tr>
<tr>
<td>3-1 RAID 세트 구성..38</td>
</tr>
<tr>
<td>3-2 드라이버 설치..41</td>
</tr>
<tr>
<td>규정 선언...42</td>
</tr>
<tr>
<td>연락처..44</td>
</tr>
</tbody>
</table>
포장 내용물

- GA-H270M-DS3H 메인보드
- 메인보드 드라이버 디스크
- 사용자 설명서
- SATA 케이블 2개
- I/O 케이드

* 위의 포장 내용물은 참조용일 뿐이며 실제 판매되는 품목은 각각 구매한 제품 패키지에 따라 다릅니다. 제품 내용물은 예고 없이 변경될 수 있습니다.
제1장 하드웨어 설치

1-1 설치 주의사항
메인보드는 ESD(정전방전)으로 인해 손상될 수 있는 민감한 전자회로와 부품을 많이 포함하고 있기 때문에 설치 전에 사용자 설명서를 숙독 후 다음 절차를 따르십시오.

설치하기 전에 사용 설명서를 주의해서 읽고 다음 절차를 따르십시오:
• 설치하기 전에 PC 케이스(샤시)가 메인보드에 적합한지 확인하십시오.
• 설치 전에 판매점에서 제공한 메인보드 S/N(일련번호) 스티커나 보증 스티커를 제거하거나 뜨지 마십시오. 스티커는 보증 확인에 필요합니다.
• 메인보드나 기타 하드웨어 부품을 설치하거나 제거하기 전에 반드시 콘센트에서 전원 코드 플러그를 빼어 AC 전원을 분리하십시오.
• 하드웨어 부분을 메인보드의 내부 커넥터에 연결할 때, 이들이 제대로 안전하게 연결되었는지 확인하십시오.
• 메인보드를 취급할 때, 금속 리드나 커넥터를 만지지 마십시오.
• 메인보드, CPU 또는 메모리와 같은 전자 부품을 취급할 때는 정전기 방전(ESD) 손목 띠를 착용하는 것이 좋습니다. 정전기 방지 손목 띠가 없으면 마른 손으로 금속 물체를 먼저 만져 정전기를 제거하십시오.
• 메인보드를 설치하기 전에, 정전기 방지 패드 위 또는 정전기 차폐 용기 안에 놓으십시오.
• 메인보드에서 전원 공급장치 케이블의 플러그를 꽂거나 빼기 전에 전원 공급장치의 전원이 꺼졌는지 확인하십시오.
• 전원을 꺼기 전에, 전원 공급장치 전압이 지역의 전압 규격에 맞게 설정되었는지 확인하십시오.
• 제품을 사용하기 전에, 하드웨어 부품의 모든 케이블 및 전원 커넥터가 연결되었는지 확인하십시오.
• 메인보드의 손상을 방지하기 위해, 나사가 메인보드 회로나 부품에 닿지 않도록 주의하십시오.
• 메인보드 위에, 또는 컴퓨터 케이스 안에 나사나 금속 부품이 남아 있는지 확인하십시오.
• 컴퓨터 시스템을 평평한 바닥에 두십시오.
• 고온이나 습기가 있는 환경에 컴퓨터를 설치하지 마십시오.
• 설치 과정 중에 컴퓨터 전원을 켜면 시스템 부품이 손상될 수 있으므로 정전기 방전 장치를 사용하며 신체적 상해를 입을 수 있습니다.
• 설치 방법에 대해 잘 모르거나 제품 사용과 관련해서 문제가 생기면 공인 컴퓨터 기술자에게 문의하십시오.
• 어댑터, 전원 연장 케이블 또는 멀티 터미널을 사용하는 경우, 설치 및 또는 접지 설명서를 참조하십시오.
1-2 제품 사양

CPU
- LGA1151 패키지에서 7세대 및 6세대 Intel® Core™ i7 프로세서/Intel® Core™ i5 프로세서/Intel® Core™ i3 프로세서/Intel® Pentium® 프로세서/Intel® Celeron® 프로세서 지원
(최신 CPU 지원 목록에 대해서는 GIGABYTE 웹사이트를 참고하십시오.)
- L3 캐시는 CPU에 따라 다르며 7세대 및 6세대 Intel® Core™ i7 프로세서/Intel® Core™ i5 프로세서/Intel® Core™ i3 프로세서/Intel® Pentium® 프로세서/Intel® Celeron® 프로세서 지원

체결
- Intel® H270 Express 체결

Memory
- 최대 64 GB의 시스템 메모리를 지원하는 DDR4 DIMM 소켓 4개
 * Windows 32비트 운영체제 한도로 인하여 4GB 이상의 물리적 메모리를 설치하면 표시되는 실제 메모리 크기는 설치한 물리적 메모리의 크기보다 작습니다.
- 듀얼 채널 메모리 아키텍처
- DDR4 2400/2133MHz 메모리 모듈 지원
- ECC Un-buffered DIMM 1Rx8/2Rx8 메모리 모듈 지원(Bi-ECC 모드에서 작동)
- Bi-ECC Un-buffered DIMM 1Rx8/2Rx8/1Rx16 메모리 모듈 지원
- XMP(Extreme Memory Profile) 메모리 모듈 지원
 * 2400 MHz 또는 XMP 메모리를 지원하려면, 7세대 프로세서를 설치해야 합니다.
(최신 지원되는 메모리 속도 및 메모리 모듈에 대해서는 GIGABYTE 웹사이트를 방문하십시오.)

온보드 그래픽
- 통합 그래픽 프로세서 - Intel® HD 그래픽 지원:
 - 1920x1200@60 Hz의 최대 해상도를 지원하는 D-Sub 포트 1개
 - 1920x1200@60 Hz의 최대 해상도를 지원하는 DVI-D 포트 1개
 * DVI-D 포트는 어댑터에 의한 D-Sub 연결을 지원하지 않습니다.
 - DisplayPort 1개(최대 해상도 4096x2304@60Hz 지원)
 * DisplayPort 1.2 버전 지원
 - HDMI 포트 1개(최대 해상도 4096x2160@24Hz 지원)
 * HDMI 1.4 버전 지원
- 최대 3대의 디스플레이를 동시에 지원합니다
- 최대 1 GB의 공유 메모리

오디오
- Realtek® ALC887 코덱
- HD 오디오
- 2/4/5.1/7.1채널
- S/PDIF 입출력 지원

LAN
- Realtek® GbeE LAN 잭(10/100/1000 Mbit)

확장 슬롯
- PCI Express x16 슬롯 1개, x16 모드에서 실행(PCIEX16)
 * 최적의 성능을 확보하려면 PCI Express 그래픽 카드를 하나만 설치하는 경우 이를 반드시 PCIEX16 슬롯에 설치하십시오.
- x4 실행(PCIEX4), PCI Express x16 슬롯 1개
- PCI Express x1 슬롯 2개
(모든 PCI Express 슬롯은 PCI Express 3.0 표준을 따름니다.)

멀티그래픽 기술
- AMD Quad-GPU CrossFire™ 및 2-Way AMD CrossFire™ 기술 지원
저장 장치
인터페이스
- 칩셋: M.2 커넥터 1개(소켓 3, M 키, type 2242/2260/2280/22110 SATA 및 PCIe x4/x2 SSD 지원)
- SATA Express 커넥터 2개
- SATA 6Gb/s 커넥터 6개
- RAID 0, RAID 1, RAID 5 및 RAID 10 지원
* M.2 및 SATA 커넥터의 설치 공지는 "1-7 내부 커넥터"를 참조하십시오.

USB
- 칩셋: USB 3.1 Gen 1 포트 8개(뒷면 패널에 포트 4개, 나머지 4개 포트는 내장 USB 헤더를 통해 이용 가능)
- USB 2.0/1.1 포트 6개(뒷면 패널에 2개 포트, 나머지 4개 포트는 내장 USB 헤더를 통해 이용 가능)

내부 커넥터
- 24핀 ATX 전원 커넥터 1개
- 8핀 ATX 12V 전원 커넥터 1개
- M.2 Socket 3 커넥터 1개
- SATA Express 커넥터 2개
- SATA 6Gb/s 커넥터 6개
- CPU 팬 헤더 1개
- 시스템 팬 헤더 3개
- 전면 패널 헤더 1개
- 전면 패널 오디오 헤더 1개
- S/PDIF 출력 헤더 1개
- USB 3.1 Gen 1 헤더 2개
- USB 2.0/1.1 헤더 2개
- TPM (신뢰할 수 있는 플랫폼 모듈) 헤더 1개
- 시리얼 포트 헤더 1개
- 병렬 포트 헤더 1개
- CMOS 클리어 젤퍼 1개

뒷면 패널 커넥터
- PS/2 키보드/마우스 포트 1개
- D-Sub 포트 1개
- DVI-D 포트 1개
- DisplayPort 1개
- HDMI 포트 1개
- USB 3.1 Gen 1 포트 4개
- USB 2.0/1.1 포트 1개
- RJ-45 포트 1개
- 오디오 책 6개(센터/서브우퍼 스피커 출력, 리어 스피커 출력, 사이드 스피커 출력, 라인 입력, 라인 출력, 마이크 입력)

입출력 컨트롤러
- iTE® I/O 컨트롤러 칩

하드웨어 모니터
- 전압 감지
- 온도 감지
- 팬 속도 감지
- 과열 경고
- 팬 고장 경고
- 팬 속도 제어
* 팬 속도 제어 기능이 지원되고 있는 설치한 팬의 종류에 좌우됩니다.
BIOS
- 64 Mbit 플래시 2개
- 라이선스 AMI UEFI BIOS 사용
- DualBIOS™ 지원
- PnP 1.0a, DMI 2.7, WfM 2.0, SM BIOS 2.7, ACPI 5.0

고유 기능
- APP Center 지원
 - APP Center에서 사용 가능한 애플리케이션은 마더보드 모델에 따라 다를 수 있습니다. 각 애플리케이션의 지원되는 기능도 마인보드 사양에 따라 다를 수 있습니다.
 - 3D OSD
 - @BIOS
 - Ambient LED
 - AutoGreen
 - BIOS Setup
 - Color Temperature
 - Cloud Station
 - EasyTune
 - Easy RAID
 - Fast Boot
 - Game Boost
 - ON/OFF Charge
 - Platform Power Management
 - Smart Backup
 - Smart Keyboard
 - Smart TimeLock
 - System Information Viewer
 - USB Blocker
 - V-Tuner
- 3TB+ 잠금 해제 지원
- Q-Flash 지원
- Xpress Install 지원

번들 소프트웨어
- Norton® Internet Security (OEM 버전)
- Intel® Optane™ 메모리 준비
- cFosSpeed

운영 체제
- Windows 10/8.1 64비트 지원
- Windows 7 32비트/64비트 지원
 * 지원되는 운영 체제는 프로세서 모델에 따라 다를 수 있습니다.
 * GIGABYTE의 웹사이트에서 "Windows USB Installation Tool"을 다운로드하여 설치한 다음 Windows 7을 설치하시십시오.

품 팩터
- Micro ATX 폼 요소, 24.4cm x 21.5cm

* GIGABYTE 에는 사전 고지 없이 어떤 식으로든 제품 사양 및 제품 관련 정보를 변경할 권한이 있습니다.
1-3 CPU 설치

CPU를 설치하기 전에 다음 지침을 따르십시오:

- 메인보드가 CPU를 지원하는지 확인하십시오.
 (최신 CPU 지원 목록에 대해서는 GIGABYTE 웹 사이트를 참고하십시오.)
- 하드웨어 손상을 방지하려면 CPU를 설치하기 전에 반드시 컴퓨터를 고고 콘센트에서 전원 코드 플러그를 빼십시오.
- CPU 중 한개의 핀을 찾으십시오. 메인보드 CPU 소켓에 있는 정렬 키와 CPU 노치의 위치를 확인하십시오.

CPU 설치

마더보드 CPU 소켓에 있는 정렬 키와 CPU의 노치 위치를 확인하십시오.

CPU를 삽입하기 전에 CPU 콤보 커버를 제거하지 마십시오. CPU를 삽입한 후 레버를 다시 장착하는 동안 로드 플레이트에서 자동으로 튀어 나올 수 있습니다.

1-4 메모리 설치

메모리를 설치하기 전에 다음 지침을 따르십시오:

- 메인보드가 해당 메모리를 지원하는지 확인하십시오. 같은 용량, 상표, 속도 및 칩의 메모리를 사용하는 것이 좋습니다.
 (최신 지원되는 메모리 속도 및 메모리 모듈에 대해서는 GIGABYTE 웹 사이트를 방문하십시오.)
- 하드웨어 손상을 방지하려면 메모리를 설치하기 전에 반드시 컴퓨터를 꺼고 콘센트에서 전원 코드 플러그를 빼십시오.
- 메모리 모듈은 실수를 방지하도록 설치되어 있습니다. 메모리 모듈은 한 방향으로만 설치할 수 있습니다. 메모리를 삽입할 수 없는 경우 방향을 바꾸어 보십시오.

듀얼 채널 메모리 구성

이 메인보드는 4개의 메모리 채널을 제공하고 듀얼 채널 기술을 지원합니다. 메모리가 설치된 후 BIOS가 메모리의 규격과 용량을 자동으로 감지합니다. 듀얼 채널 메모리 모듈을 사용하도록 설정하면 원래 메모리 대역폭이 두 배로 늘어납니다.

하드웨어 설치에 대한 자세한 내용은 GIGABYTE의 웹사이트를 참조하십시오.
확장 카드 설치
확장 카드 설치하기 전에 다음 지침을 따르십시오.
• 메인보드가 해당 확장카드를 지원하는지 확인하십시오. 확장 카드에 함께 포함된 설명서를 숙독하십시오.
• 하드웨어 손상을 방지하려면 확장 카드를 설치하기 전에 반드시 컴퓨터를 꺼고 콘센트에서 전원 코드 플러그를 빼으십시오.

1-6 뒷면 패널 커넥터

USB 2.0/1.1 포트
USB 포트는 USB 2.0/1.1 규격을 지원합니다. 이 포트는 USB 장치용으로 사용합니다.
PS/2 키보드/마우스 포트
이 포트를 사용해 PS/2 마우스 또는 키보드를 연결하십시오.
D-Sub 포트
D-Sub 포트는 15핀 D-Sub 커넥터와 1920x1200@60Hz의 최대 해상도를 지원합니다(저전력 모니터를 사용하는 경우 제한됩니다). D-Sub 연결을 지원하는 모니터를 이 포트에 연결하십시오.
DVI-D 포트
DVI-D 포트는 DVI-D 규격에 부합하며 1920x1200@60 Hz의 최대 해상도를 지원합니다(저전력 모니터를 사용하는 경우 제한됩니다). DVI-D 연결을 지원하는 모니터를 이 포트에 연결하십시오.
DisplayPort
DisplayPort는 고품질 디지털 이미징과 오디오를 제공하고 양방향 오디오 전송을 지원하는 신세대 인터페이스 기술 중 하나입니다. DisplayPort는 DPCP와 HDCP 컨텐츠 보호 메커니즘을 지원할 수 있습니다. 이 포트를 DisplayPort-지원 모니터 연결용으로 사용할 수 있습니다. 주의: DisplayPort 기술은 해상도가 최대 4096x2304@60Hz까지 지원할 수 있지만 실제 지원되는 해상도는 사용 중인 모니터에 따라 달라집니다.
(주의) DVI-D 포트는 여덟터에 의한 D-Sub 연결을 지원하지 않습니다.
HDMI 포트
HDMI 포트는 HDCP를 준수하고 Dolby TrueHD 및 DTS HD 마스터 오디오 형식을 지원합니다. 또한 최대 192kHz/16bit 8-채널 LPCM 오디오 출력을 지원합니다. 이 포트를 HDMI-지원 모니터 연결용으로 사용할 수 있습니다. 지원되는 최대 해상도는 4096x2160@24 Hz 이지만 실제 해상도는 사용 중인 모니터에 따라 달라질 수 있습니다.
• 삼중 디스플레이 구성의 설정에 걸쳐, 먼저 운영 체제에서 메인보드 드라이버를 설치해야 합니다.
• DisplayPort/HDMI 장치를 설치하고 나면 기본 사운드 재생 장치를 DisplayPort/HDMI 로 설정해야 합니다. (항목 이름은 사용자의 운영 체제에 따라 다를 수 있습니다.)

USB 3.1 Gen 1 포트
USB 3.1 Gen 1 포트는 USB 3.1 Gen 1 사양을 지원하며 USB 2.0 사양과 호환됩니다. 이 포트는 USB 장치용으로 사용합니다.

RJ-45 LAN 포트
Gigabit 이더넷 LAN 포트는 최대 1 Gbps 데이터 속도의 인터넷 연결을 제공합니다. 다음은 LAN 포트 LED 상태에 대한 설명입니다.

<table>
<thead>
<tr>
<th>LAN 포트</th>
<th>연결/속도 LED</th>
<th>활동 LED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>주황색</td>
<td>1 Gbps 데이터 속도</td>
</tr>
<tr>
<td></td>
<td>녹색</td>
<td>100 Mbps 데이터 속도</td>
</tr>
<tr>
<td></td>
<td>고기</td>
<td>10 Mbps 데이터 속도</td>
</tr>
</tbody>
</table>

센트/서브우퍼 스피커 출력(주황색)
5.1/7.1채널 오디오 구성에서 이 오디오 잭을 사용하여 센터/서브우퍼 스피커를 연결하십시오.

리어 스피커 출력(흑색)
이 잭은 4/5.1/7.1채널 오디오 구성에서 뒷면 스피커를 연결하는 데 사용할 수 있습니다.

사이드 스피커 출력(회색)
7.1채널 오디오 구성에서 이 오디오 잭을 사용하여 사이드 스피커를 연결하십시오.

라인 입력(청색)
라인 입력 잭입니다. 광 드라이브, Walkman과 같은 장치에 이 오디오 잭을 사용하십시오.

라인 출력(녹색)
라인 출력 잭입니다. 헤드폰이나 2채널 스피커에 이 오디오 잭을 사용하십시오. 이 잭은 4/5.1/7.1채널 오디오 구성에서 프런트 스피커를 연결하는 데 사용할 수 있습니다.

마이크 입력(분홍색)
마이크 입력 잭입니다.

자세한 소프트웨어 정보는 GIGABYTE 웹사이트를 참조하십시오.

- 후면 패널 커넥터에 연결된 케이블을 제거할 때는 장치에서 케이블을 먼저 제거한 후 메인보드에서 제거하십시오.
- 케이블을 제거할 때는 커넥터에서 케이블을 뿌리로 끝으로 사요. 케이블 커넥터 안의 전기 단락을 방지하려면 좌우로 휘돌지 마십시오.
1-7 내부 커넥터

- 1) ATX_12V_2X4
- 2) ATX
- 3) CPU_FAN
- 4) SYS_FAN1/2/3
- 5) SATA EXPRESS
- 6) SATA3 0/1/2/3/4/5
- 7) M2A_32G
- 8) F_PANEL
- 9) F_AUDIO
- 10) SPDIF_O
- 11) F_USB30_1/F_USB30_2
- 12) F_USB1/F_USB2
- 13) TPM
- 14) LPT
- 15) COM
- 16) BAT
- 17) CLR_CMOS

외부 장치를 연결하기 전에 다음 지침을 읽으십시오.
• 먼저 장치가 연결하고자 하는 커넥터와 호환되는지 확인하십시오.
• 장치를 설치하기 전에 장치와 컴퓨터를 고심십시오. 장치 손상을 방지하려면 콘센트에서 전원 코드 플러그를 빼십시오.
• 장치를 설치한 후 컴퓨터를 켜기 전 장치 케이블이 메인보드의 커넥터에 단단히 연결되었는지 확인하십시오.
1/2) ATX_12V_2X4/ATX (2x4 12V 전원 커넥터 및 2x12 주 전원 커넥터)
전원 커넥터의 사용으로 전원 공급 장치는 메인보드의 모든 부품에 충분히 안정적인 전력을 공급할 수 있습니다. 전원 커넥터를 연결하기 전에 먼저 전원 공급 장치가 깨져 있고 모든 장치가 올바르게 설치되었는지 확인하십시오. 전원 커넥터는 실수를 방지하도록 설계되어 있습니다. 전원 공급 케이블은 전원 커넥터에 올바른 방향으로 연결하십시오. 12V 전원 커넥터는 주로 CPU에 전력을 공급합니다. 12V 전원 커넥터가 연결되어 있지 않으면 컴퓨터를 시작할 수 없습니다.

확장 요구 사항을 만족하려면 높은 소비 전력(500W 이상)을 견딜 수 있는 전원 공급 장치를 권합니다. 필요 전력을 공급하지 못하는 전원 공급 장치가 사용된 경우 시스템이 불안정하거나 부팅되지 않을 수 있습니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>정의</th>
<th>번호</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND (2x4 pin 12V 전용)</td>
<td>5</td>
<td>+12V (2x4 pin 12V 전용)</td>
</tr>
<tr>
<td>2</td>
<td>GND (2x4 pin 12V 전용)</td>
<td>6</td>
<td>+12V (2x4 pin 12V 전용)</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>7</td>
<td>+12V</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>8</td>
<td>+12V</td>
</tr>
</tbody>
</table>

ATX_12V_2X4:

<table>
<thead>
<tr>
<th>번호</th>
<th>정의</th>
<th>번호</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND (2x4 pin 12V 전용)</td>
<td>5</td>
<td>+12V (2x4 pin 12V 전용)</td>
</tr>
<tr>
<td>2</td>
<td>GND (2x4 pin 12V 전용)</td>
<td>6</td>
<td>+12V (2x4 pin 12V 전용)</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>7</td>
<td>+12V</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>8</td>
<td>+12V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>정의</th>
<th>번호</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.3V</td>
<td>13</td>
<td>3.3V</td>
</tr>
<tr>
<td>2</td>
<td>3.3V</td>
<td>14</td>
<td>-12V</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>15</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>+5V</td>
<td>16</td>
<td>PS_ON (소프트 커기/끄기)</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>17</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>+5V</td>
<td>18</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>19</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>전원 양호</td>
<td>20</td>
<td>NC</td>
</tr>
<tr>
<td>9</td>
<td>5VSB(대기 +5V)</td>
<td>21</td>
<td>+5V</td>
</tr>
<tr>
<td>10</td>
<td>+12V</td>
<td>22</td>
<td>+5V</td>
</tr>
<tr>
<td>11</td>
<td>+12V</td>
<td>23</td>
<td>+5V (2x12 pin ATX에만 해당)</td>
</tr>
<tr>
<td>12</td>
<td>+12V (2x12 pin ATX에만 해당)</td>
<td>24</td>
<td>GND(2x12 pin ATX 전용)</td>
</tr>
</tbody>
</table>

3/4) CPU_FAN/SYS_FAN1/2/3(팬 헤더)
이 메인보드에 있는 모든 팬 헤더는 4-핀입니다. 대부분의 팬 헤더는 실수로 삽입하는 것을 방지하도록 설계되어 있습니다. 팬 케이블을 연결할 때는 손으로 바로 방향으로 연결하십시오. 손으로 삽입할 경우 (혹은 케이블이 손으로 삽입되지 않은 경우) 손으로 삽입하는 팬을 사용해야 합니다. 최적의 방열을 위해서는 시스템 팬을 PC 케이스(사시) 안에 설치하는 것이 좋습니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>전압 속도 제어</td>
</tr>
<tr>
<td>3</td>
<td>감지</td>
</tr>
<tr>
<td>4</td>
<td>PWM 속도 제어</td>
</tr>
</tbody>
</table>

• CPU 및 시스템의 과열을 막으려면 꼬 팬 헤더에 팬 케이블을 연결하십시오. 과열은 CPU에 손상을 일으키거나 시스템 장애를 일으킬 수 있습니다.
• 이 팬 헤더는 구성 점퍼 블록이 아닙니다. 헤더에 점퍼 캡을 씌우지 마십시오.
5) SATA EXPRESS (SATA Express 커넥터)
각 SATA Express 커넥터는 단 하나의 SATA Express 장치를 지원합니다.

6) SATA3 0/1/2/3/4/5 (SATA 6Gb/s 커넥터)
SATA 커넥터는 SATA 6Gb/s 표준을 준수하며 SATA 3Gb/s 및 SATA 1.5Gb/s 표준과 호환됩니다. 각 SATA 커넥터는 단일 SATA 장치를 지원합니다. Intel® 칩셋은 RAID 0, RAID 1, RAID 5 및 RAID 10을 지원합니다. RAID 배열 구성에 대한 지침은 제3장, "RAID 세트 구성하기"를 참조하십시오.

<table>
<thead>
<tr>
<th>전 번호</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>TXP</td>
</tr>
<tr>
<td>3</td>
<td>TXN</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>RXN</td>
</tr>
<tr>
<td>6</td>
<td>RXP</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
</tr>
</tbody>
</table>

SATA 포트에서 핫 플러그를 사용하기 위한 자세한 내용은 제2장 "BIOS 설치", "Peripheral(SATA And RST Configuration)"를 참조하십시오.

7) M2A_32G (M.2 소켓 3 커넥터)
M.2 커넥터는 M.2 SATA SSD와 M.2 PCIe SSD를 지원하고 Intel® 칩셋을 통해 RAID 구성도 지원합니다. M.2 PCIe SSD는 M.2 SATA SSD 또는 SATA 하드 드라이브에서 RAID 세트를 만드는 데 사용할 수 없고, UEFI에서 RAID 세트를 구성하는 데만 사용할 수 있습니다. RAID 배열 구성에 대한 지침은 제3장, "RAID 세트 구성하기"를 참조하십시오.

아래의 단계에 따라 M.2 커넥터에 M.2 SSD를 올바로 설치하십시오.
단계 1:
스크류 드라이버를 사용하여 메인보드에서 나사와 너트를 풀습니다. M.2 SSD를 설치할 올바른 장착 구멍을 찾은 후 먼저 너트를 조입니다.
단계 2:
M.2 SSD를 비스듬히 커넥터에 밀어 넣습니다.
단계 3:
M.2 SSD를 아래로 누른 후 나사로 고정합니다.

M.2 SSD를 설치할 올바른 장착 구멍을 선택하여 나사와 너트를 다시 조입니다.
M.2 및 SATA 커넥터용 설치 공지:

<table>
<thead>
<tr>
<th>커넥터</th>
<th>SATA3 0</th>
<th>SATA3 1</th>
<th>SATA3 2</th>
<th>SATA3 3</th>
<th>SATA3 4</th>
<th>SATA3 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.2 SATA SSD</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.2 PCIe x4 SSD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.2 PCIe x2 SSD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>설치된 M.2 SSD 없음</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※: 이용 가능; X: 이용할 수 없음.

8) F_PANEL(앞면 패널 헤더)
아래의 편리한 사용에 따라 PC 케이스(샤시) 전면 패널의 전원 스위치, 리셋 스위치, 스피커, PC 케이스(샤시)의 임업 스위치/센터 및 시스템 상태 표시기를 이 헤더에 연결하십시오. 케이블을 연결하기 전에 양극과 음극 부분을 확인하십시오.

- PLED/PWR LED (전원 LED):
PC 케이스(사시) 전면 패널의 전원 상태 표시기에 연결됩니다. 시스템이 작동 중일 때 LED가 커집니다. 시스템이 S3/S4 절전 상태에 있거나 임업 스위치의 값이 (S5) LED가 꺼집니다.

- PW(전원 스위치):
PC 케이스(사시) 전면 패널의 전원 스위치에 연결됩니다. 전원 스위치를 사용하여 시스템을 액세스할 수 있습니다(자세한 정보는 제2장 "BIOS 설치", "Power" 참조하십시오).

- SPEAK (스피커):
PC 케이스(사시) 전면 패널의 스피커에 연결됩니다. 시스템이 신호음을 통해 시스템 시작 상태를 알립니다. 시스템을 시작할 때 문제가 감지되지 않으면 한 번의 짧은 신호음이 납니다.

- HD (하드 드라이브 활동 LED):
PC 케이스(사시) 전면 패널의 하드 드라이브 활동 LED에 연결됩니다. 하드 드라이브가 데이터를 읽거나 쓰 때 LED가 커집니다.

- RES(초기화 스위치):
PC 케이스(사시) 전면 패널의 리셋 스위치와 연결됩니다. 컴퓨터가 작동을 멈추어 정상적으로 다시 시작할 수 없는 경우 리셋 스위치를 누르십시오.

- CI(PCI 케이스(사시) 임업 헤더):
PC 케이스(사시) 커버가 제거될 경우 이를 감지할 수 있는 PCI 케이스(사시) 임업 스위치/센터를 PC 케이스(사시)에 연결합니다. 이 기능을 사용하려면 PCI 케이스(사시) 임업 스위치/센터가 있는 PC 케이스(사시)가 필요합니다.

- NC: 연결 없음.
전면 패널 설계는 PC 케이스(사시)에 따라 다릅니다. 전면 패널 모듈은 주로 전원 스위치, 리셋 스위치, 전원 LED, 하드 드라이브 활동 LED, 스피커 등으로 구성됩니다. PC 케이스(사시) 전면 패널 모듈을 헤더에 연결할 때는 전문 지침과 관련된 지침이 정확히 알치는지 확인하십시오.
9) F_AUDIO(앞면 패널 오디오 헤더)
전면 패널 오디오 헤더는 Intel® 고음질 오디오(HD) 및 AC97 오디오를 지원합니다. PC 케이스(사시) 전면 패널 오디오 모듈을 이 헤더에 연결할 수 있습니다. 모듈 커넥터의 전선 지정이 메인보드 헤더의 전선 지정과 일치하는지 확인하십시오. 모듈 커넥터와 메인보드 헤더를 잘못 연결하면 장치가 작동하지 않거나 손상될 수도 있습니다.

<table>
<thead>
<tr>
<th>HD 전면 패널 오디오용</th>
<th>AC97 전면 패널 오디오용</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MIC2_L</td>
<td>1 MIC</td>
</tr>
<tr>
<td>2 GND</td>
<td>2 GND</td>
</tr>
<tr>
<td>3 MIC2_R</td>
<td>3 MIC 전원</td>
</tr>
<tr>
<td>4 NC</td>
<td>4 NC</td>
</tr>
<tr>
<td>5 LINE2_R</td>
<td>5 라인 출력(우)</td>
</tr>
<tr>
<td>6 감지</td>
<td>6 NC</td>
</tr>
<tr>
<td>7 FAUDIO_JD</td>
<td>7 NC</td>
</tr>
<tr>
<td>8 팁 없음</td>
<td>8 팁 없음</td>
</tr>
<tr>
<td>9 LINE2_L</td>
<td>9 라인 출력(좌)</td>
</tr>
<tr>
<td>10 감지</td>
<td>10 NC</td>
</tr>
</tbody>
</table>

기본값으로 전면 패널 오디오 헤더는 HD 오디오를 지원합니다.
오디오 신호는 전면 및 후면 오디오 연결에 동시에 표시됩니다.
 일부 PC 케이스(사시)는 각 전선에 단일 플러그 대신 분리된 커넥터가 있는 전면 패널 오디오 모듈을 제공합니다. 전선 지정이 다른 전면 패널 오디오 모듈을 연결하는 것에 대한 정보는 PC 케이스(사시) 제조업체에 문의하십시오.

10) SPDIF_O(S/PDIF 출력 헤더)
이 헤더는 디지털 S/PDIF 출력을 지원하고 디지털 오디오 출력용 S/PDIF 디지털 오디오 케이블(확장 카드와 함께 제공)을 사용하여 메인보드를 그래픽 카드와 사운드 카드와 같은 확장 카드에 연결합니다. 예를 들어, HDMI 디스플레이를 그래픽 카드에 연결하려고 할 때 HDMI 디스플레이에 디지털 오디오 출력 단자가 있는 경우 메인보드에서 그래픽 카드로 디지털 오디오 출력을 보내기 위해 일부 그래픽 카드에서는 S/PDIF 디지털 오디오 케이블을 사용해야 합니다. S/PDIF 디지털 오디오 케이블 연결에 대한 정보는 확장 카드 설명서를 숙독하십시오.

<table>
<thead>
<tr>
<th>전선 번호</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPDIFO</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
</tbody>
</table>
11) F_USB30_1/F_USB30_2 (USB 3.1 Gen 1 헤더)
헤더는 USB 3.1 Gen 1/USB 2.0 사양에 부합하며 헤더 하나마다 USB 포트를 두 개씩 제공할 수 있습니다. 옵션 사양으로 두 개의 USB 3.1 Gen 1 포트를 제공하는 3.5인치 앞면 패널을 구매하려면 가까운 대리점에 문의하시기 바랍니다.

<table>
<thead>
<tr>
<th>핀 번호</th>
<th>정의</th>
<th>핀 번호</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VBUS</td>
<td>11</td>
<td>D2+</td>
</tr>
<tr>
<td>2</td>
<td>SSRX1-</td>
<td>12</td>
<td>D2-</td>
</tr>
<tr>
<td>3</td>
<td>SSRX1+</td>
<td>13</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>14</td>
<td>SSTX2+</td>
</tr>
<tr>
<td>5</td>
<td>SSTX1-</td>
<td>15</td>
<td>SSTX2-</td>
</tr>
<tr>
<td>6</td>
<td>SSTX1+</td>
<td>16</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>17</td>
<td>SSRX2+</td>
</tr>
<tr>
<td>8</td>
<td>D1-</td>
<td>18</td>
<td>SSRX2-</td>
</tr>
<tr>
<td>9</td>
<td>D1+</td>
<td>19</td>
<td>VBUS</td>
</tr>
<tr>
<td>10</td>
<td>NC</td>
<td>20</td>
<td>핀 없음</td>
</tr>
</tbody>
</table>

12) F_USB1/F_USB2 (USB 2.0/1.1 헤더)
이 헤더는 USB 2.0/1.1 규격을 준수합니다. 각 USB 헤더는 선택 품목인 USB 브래킷을 통해 USB 포트 2개를 제공합니다. 선택 품목인 USB 브래킷 구매에 대해서는 지역 판매점에 문의하십시오.

<table>
<thead>
<tr>
<th>핀 번호</th>
<th>정의</th>
<th>핀 번호</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>전원(5V)</td>
<td>6</td>
<td>USB DY+</td>
</tr>
<tr>
<td>2</td>
<td>전원(5V)</td>
<td>7</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>USB DX-</td>
<td>8</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>USB DY-</td>
<td>9</td>
<td>핀 없음</td>
</tr>
<tr>
<td>5</td>
<td>USB DX+</td>
<td>10</td>
<td>NC</td>
</tr>
</tbody>
</table>

IEEE 1394 브래킷(2x5핀) 케이블을 USB 2.0/1.1 헤더에 연결하지 마십시오.
USB 브래킷 손상을 방지하려면 USB 브래킷을 설치하기 전에 컴퓨터를 고고 콘센트에서 전원 코드 플러그를 뿌으십시오.
13) TPM (보안 플랫폼 모듈 헤더)
TPM(트러스티드 플랫폼 모듈)을 이 헤더에 연결할 수 있습니다.

<table>
<thead>
<tr>
<th>핀 번호</th>
<th>정의</th>
<th>핀 번호</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LCLK</td>
<td>11</td>
<td>LAD0</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>12</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>LFRAME</td>
<td>13</td>
<td>NC</td>
</tr>
<tr>
<td>4</td>
<td>핀 없음</td>
<td>14</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>LRESET</td>
<td>15</td>
<td>SB3V</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
<td>16</td>
<td>SERIRQ</td>
</tr>
<tr>
<td>7</td>
<td>LAD3</td>
<td>17</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>LAD2</td>
<td>18</td>
<td>NC</td>
</tr>
<tr>
<td>9</td>
<td>VCC3</td>
<td>19</td>
<td>NC</td>
</tr>
<tr>
<td>10</td>
<td>LAD1</td>
<td>20</td>
<td>NC</td>
</tr>
</tbody>
</table>

14) LPT (병렬 포트 헤더)
LPT 헤더는 선택 품목인 LPT 포트 케이블을 통해 연결하는 병렬 포트를 제공합니다. 선택 품목인 LPT 포트 케이블 구매에 대해서는 지역 판매점에 문의하십시오.

<table>
<thead>
<tr>
<th>핀 번호</th>
<th>정의</th>
<th>핀 번호</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STB-</td>
<td>14</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>AFD-</td>
<td>15</td>
<td>PD6</td>
</tr>
<tr>
<td>3</td>
<td>PD0</td>
<td>16</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>ERR-</td>
<td>17</td>
<td>PD7</td>
</tr>
<tr>
<td>5</td>
<td>PD1</td>
<td>18</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>INIT-</td>
<td>19</td>
<td>ACK-</td>
</tr>
<tr>
<td>7</td>
<td>PD2</td>
<td>20</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>SLIN-</td>
<td>21</td>
<td>BUSY</td>
</tr>
<tr>
<td>9</td>
<td>PD3</td>
<td>22</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>23</td>
<td>PE</td>
</tr>
<tr>
<td>11</td>
<td>PD4</td>
<td>24</td>
<td>핀 없음</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>25</td>
<td>SLCT</td>
</tr>
<tr>
<td>13</td>
<td>PD5</td>
<td>26</td>
<td>GND</td>
</tr>
</tbody>
</table>

15) COM (직렬 포트 헤더)
COM 헤더는 선택 품목인 COM 포트 케이블을 통해 연결하는 직렬 포트를 제공합니다. 선택 품목인 COM 포트 케이블 구매에 대해서는 지역 판매점에 문의하십시오.

<table>
<thead>
<tr>
<th>핀 번호</th>
<th>정의</th>
<th>핀 번호</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NDCD-</td>
<td>6</td>
<td>NDSR-</td>
</tr>
<tr>
<td>2</td>
<td>NSIN</td>
<td>7</td>
<td>NRTS-</td>
</tr>
<tr>
<td>3</td>
<td>NSOUT</td>
<td>8</td>
<td>NCTS-</td>
</tr>
<tr>
<td>4</td>
<td>NDTRA-</td>
<td>9</td>
<td>NRI-</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>10</td>
<td>핀 없음</td>
</tr>
</tbody>
</table>
16) BAT (배터리)

배터리는 컴퓨터가 꺼졌을 때 CMOS에 값(BIOS 구성, 날짜 및 시간 정보 등)을 보존하도록 전원을 제공합니다. 배터리 전압이 낮은 수준으로 떨어지면 배터리를 교체하십시오. 그렇지 않으면 CMOS 값이 정확하지 않거나 손실될 수 있습니다.

배터리를 제거하여 CMOS 값을 지울 수 있습니다.
1. 컴퓨터를 끄고 전원 코드 플러그를 빼십시오.
2. 배터리 홀더에서 배터리를 깨끗이 빼낸 후 1분 동안 기다리십시오. (또는 드라이버와 같은 금속 물체로 배터리 홀더의 양극과 음극 단자를 5초 동안 접촉하여 단락시키십시오.)
3. 배터리를 교체합니다.
4. 전원 코드를 연결하고 컴퓨터를 다시 시작합니다.

* 배터리를 교체하기 전에 항상 컴퓨터를 꺼고 전원 코드 플러그를 빼으십시오.
* 배터리를 동등한 것으로 교체하십시오. 잘못된 모델로 교체하면 폭발 위험이 있습니다.
* 배터리를 직접 교체할 수 없거나 배터리 모델에 대해 잘 모르면 구매처나 지역 판매점에 문의하십시오.
* 배터리를 설치할 때 배터리의 양극(+)과 음극(-) 방향에 주의하십시오 (양극 쪽이 위를 향해야 합니다)
* 소모된 배터리는 지역 환경 규정에 따라 처리해야 합니다.

17) CLR_CMOS(클리어 CMOS 점퍼)

이 점퍼를 이용해서 BIOS 구성 내용을 삭제하고 CMOS 값을 공장 기본값으로 초기화합니다. CMOS 값을 지우려면 스クリ우 드라이버 같은 금속으로 2개의 핀을 몇 초간 누르십시오.

열림: Normal

단락: CMOS 값 소거

* CMOS 값을 지우기 전에 항상 컴퓨터를 끄고 콘센트에서 전원 코드 플러그를 빼으십시오.
* 시스템이 다시 시작되면 BIOS Setup으로 이동하여 공장 기본값을 로드하하거나(Load Optimized Defaults 선택) BIOS 설정을 수동으로 구성하십시오(BIOS 구성에 대해서는 제2장, ‘BIOS 설치’ 참조).
제2장 BIOS Setup

BIOS(기본 입출력 시스템)는 시스템의 하드웨어 매개 변수를 메인보드의 CMOS에 기록합니다. 주요 기능에는 시스템 시작, 시스템 매개 변수 저장 및 운영체제 로드하는 동안 Power-On Self-Test (POST) 기능을 포함합니다. BIOS에는 기본 시스템 구성 설정 또는 특정 시스템 기능을 활성화하기 위해 사용자가 변경할 수 있는 BIOS 설치 프로그램이 있습니다.

전원이 깨지면 CMOS에 구성 값을 보존할 수 있도록 메인보드의 배터리가 CMOS에 필요한 전원을 공급합니다.

BIOS 셋업 프로그램에 액세스하려면 전원을 켜고 POST 동안 <Delete> 키를 누르십시오.

BIOS를 업그레이드하려면 GIGABYTE Q-Flash 또는 @BIOS 유틸리티를 사용하시는 것이 좋습니다.

- Q-Flash는 사용자가 운영 체제로 들어갈 필요 없이 BIOS를 빠르고 쉽게 업그레이드하거나 백업할 수 있게 합니다.
- @BIOS는 인터넷에서 최신 버전의 BIOS를 검색하여 다운로드하고 BIOS를 업데이트하는 Windows 기반 유틸리티입니다.

2-1 시작 화면

컴퓨터를 부팅하면 다음과 같은 로그 화면이 나타납니다. (샘플 BIOS 버전: D1)

다음과 같은 두 개의 서로 다른 BIOS 모드가 있으며 이 두 가지 모드 사이를 전환하려면 <F2> 키를 사용하면 됩니다.

Classic Setup 모드에서 자세한 BIOS 설정이 제공됩니다. 키보드의 화살표 키를 눌러 항목 사이를 이동한 다음 <Enter>를 눌러 수락하거나 하위 메뉴에 들어가면 됩니다. 또는 마우스로 원하는 항목을 선택할 수 있습니다. Easy Mode를 사용하면 사용자가 현재 시스템 정보를 신속하게 볼 수 있고 최적의 성능을 위해 조정할 수도 있습니다. Easy Mode에서는 마우스를 사용하여 구성 항목 사이를 이동할 수 있습니다.

- 시스템이 평소와 같이 안정적이지 않으면 Load Optimized Defaults 항목을 선택하여 시스템을 기본값으로 설정하십시오.
- 이 장에서 설명한 BIOS 셋업 메뉴는 참조용일 뿐이며 BIOS 버전에 따라 다를 수 있습니다.
사용자가 설정한 오버클록/과전압의 안정적인 작동 여부는 전체 시스템 구성에 달려 있습니다. 오버클록/과전압을 잘못 수행할 경우 CPU, 칩셋 또는 메모리가 손상되고 이런 부품의 유효 수명을 단축하게 할 수 있습니다. 이 페이지는 고급 사용자 전용이며 시스템 불안정이나 다른 예기치 않은 결과를 방지하려면 기본 설정값을 수정하지 말 것을 권합니다. (설정을 부적절하게 수정하면 시스템을 부팅하지 못할 수도 있습니다. 이 경우 CMOS 값을 지우고 보드를 기본값으로 다시 설정해 보십시오.)

- Advanced Frequency Settings (고급 주파수 설정)
 - Host Clock Value
 현재의 호스트 클록 주파수를 표시합니다.
 - Graphics Slice Ratio (주의)
 그래픽 슬라이스 비율을 설정할 수 있습니다.
 - Graphics UnSlice Ratio (주의)
 그래픽 언슬라이스 비율을 설정할 수 있습니다.
 - CPU Clock Ratio
 설치된 CPU의 클록 비율을 수정할 수 있습니다. 조정 가능한 범위는 설치된 CPU에 따라 다릅니다.
 - CPU Frequency
 현재 작동 중인 CPU 주파수를 표시합니다.

- Advanced CPU Core Settings (고급 CPU 코어 설정)
 - CPU Clock Ratio, CPU Frequency
 위의 설정은 Advanced Frequency Settings 메뉴의 동일 항목 하에 설정과 동기화됩니다.
 - AVX Offset (주의)
 AVX 오프셋은 AVX 비율의 음수 오프셋입니다.

(주의) 이 항목은 이 기능을 지원하는 CPU를 설치한 경우에만 표시됩니다. Intel® CPU의 고유 기능에 대한 자세한 정보는 Intel 웹사이트를 방문하십시오.
Uncore Ratio
CPU 언코어 비율을 설정할 수 있습니다. 조절 가능 범위는 사용 중인 CPU에 따라 다릅니다.

Uncore Frequency
CPU의 현재 언코어 주파수를 표시합니다.

CPU Flex Ratio Override
CPU 플렉스 비율을 사용 또는 사용 안 할 수 있습니다. CPU Clock Ratio이 Auto로 설정되어 있을 경우, CPU의 최대 클록 비율은 CPU Flex Ratio Settings 값을 기준으로 정해지게 됩니다. (기본값: Disabled)

CPU Flex Ratio Settings
CPU 플렉스 비율을 설정할 수 있습니다. 조정 가능 범위는 CPU별로 다를 수 있습니다.

Intel(R) Turbo Boost Technology (주의)
Intel® CPU Turbo Boost 기술 사용 여부를 결정할 수 있습니다. Auto를 선택하면 BIOS가 이 설정을 자동으로 구성합니다. (기본값: Auto)

Turbo Ratio (주의)
다른 활성 코어의 CPU Turbo 비율을 설정할 수 있습니다. Auto은 CPU Turbo 비율을 CPU 사양에 따라 설정합니다. (기본값: Auto)

Power Limit TDP (Watts) / Power Limit Time
CPU 터보 모드에 대한 전원 한계 및 지정된 전원 한계에서 작동하는 데 걸리는 시간을 설정할 수 있습니다. 지정된 값이 초과하면 CPU가 자동으로 코어 주파수를 감소시켜 전력 소모를 줄입니다. Auto은 전류 한계를 CPU 사양에 따라 설정합니다. (기본값: Auto)

Core Current Limit (Amps)
CPU 터보 모드에 대한 전류 한계를 설정할 수 있습니다. CPU 전류가 설정한 전류 한계를 초과하면 CPU가 자동으로 코어 주파수를 감소시켜 전류를 줄입니다. Auto는 전류 한계를 CPU 사양에 따라 설정합니다. (기본값: Auto)

Hyper-Threading Technology (주의)
이 기능을 지원하는 Intel® CPU를 사용할 경우 멀티스레딩 기술을 사용으로 설정할 수 있습니다. 이 기능은 다중 프로세서 모드를 지원하는 운영 체제에서만 작동합니다. Auto를 선택하면 BIOS가 이 설정을 자동으로 구성합니다. (기본값: Auto)

Intel(R) Speed Shift Technology (Intel® Speed Shift Technology) (주의)
Intel® Speed Shift Technology를 사용 또는 사용 안 할 수 있습니다. 이 기능을 사용하기로 설정하면 프로세서가 자체 작동 주파수를 더욱 신속하게 증가시켜 시스템 반응성을 개선할 수 있습니다. (기본값: Disabled)

CPU Enhanced Halt (C1E) (주의)
시스템 정지 상태에서 CPU 절전 기능인 Intel® CPU Enhanced Halt(C1E) 기능 사용 여부를 설정합니다. 사용하도록 설정하면 시스템 정지 상태 동안 CPU 코어 주파수와 전압이 줄어 소비 전력이 감소합니다. Auto를 선택하면 BIOS가 이 설정을 자동으로 구성합니다. (기본값: Auto)

C3 State Support (주의)
시스템 정지 상태에서 CPU가 C3 모드로 들어갈지 여부를 결정합니다. 사용하도록 설정하면 시스템 정지 상태 동안 CPU 코어 주파수와 전압이 줄어 소비 전력이 감소합니다. C3 상태는 C1보다 절전 기능을 향상한 상태입니다. Auto를 선택하면 BIOS가 이 설정을 자동으로 구성합니다. (기본값: Auto)

(주의) 이 항목은 이 기능을 지원하는 CPU를 설치한 경우에만 표시됩니다. Intel® CPU의 고유 기능에 대한 자세한 정보는 Intel 웹 사이트를 방문하십시오.
C6/C7 State Support

C8 State Support
시스템 정지 상태에서 CPU가 C8 모드로 들어갈지 여부를 결정합니다. 사용하도록 설정하면 시스템 정지 상태 동안 CPU 코어 주파수와 전압이 줄어 소비 전력이 감소합니다. C8 상태는 C6/C7보다 절전 기능이 향상된 상태입니다. Auto를 선택하면 BIOS가 이 설정을 자동으로 구성합니다. (기본값: Auto)

Package C State Limit
프로세서에 대한 C-상태 한계를 지정할 수 있습니다. Auto를 선택하면 BIOS가 이 설정을 자동으로 구성합니다. (기본값: Auto)

CPU Thermal Monitor
CPU 과열 보호 기능인 Intel® Thermal Monitor 기능 사용 여부를 설정합니다. 사용하도록 설정하면 CPU가 과열되었을 때 CPU 코어 주파수와 전압이 감소합니다. Auto를 선택하면 BIOS가 이 설정을 자동으로 구성합니다. (기본값: Auto)

CPU EIST Function
Enhanced Intel® Speed Step Technology(EIST)의 사용 여부를 설정합니다. Intel® EIST 기술은 CPU 부하에 따라 CPU 전압과 코어 주파수를 능동적이고 효과적으로 낮추어 평균 소비 전력과 열생성을 감소시킵니다. Auto를 선택하면 BIOS가 이 설정을 자동으로 구성합니다. (기본값: Auto)

Voltage Optimization
전압 최적화를 활성화하여 전력 소비량을 줄일 것인지 여부를 결정할 수 있습니다. (기본값: Disabled)

RSR
CPU 전압/온도가 너무 높을 경우 CPU 토클 배수를 자동으로 낮출지 여부를 결정할 수 있습니다. (기본값: Enabled)

Hardware Prefetcher
하드웨어 프리페치를 활성화하여 데이터 및 지침을 메모리에서 캐시로 프리페치할지 여부를 결정할 수 있습니다. (기본값: Enabled)

Adjacent Cache Line Prefetch
프로세서가 요청된 캐시 라인과 후속 캐시 라인을 검색할 수 있도록 해주는 인접한 캐시 라인 프리페치 메커니즘을 활성화할 것인지 여부를 결정할 수 있습니다. (기본값: Enabled)

Extreme Memory Profile (X.M.P.)
사용하면 BIOS가 XMP 메모리 모듈에 있는 SPD 데이터를 읽어 메모리 성능을 향상 시킵니다.
- Disabled 이 기능을 사용 안 함으로 설정합니다. (기본값)
- Profile1 프로필 1 설정을 사용합니다.
- Profile2 (주의 2) 프로필 2 설정을 사용합니다.

System Memory Multiplier
시스템 메모리 승수를 설정할 수 있습니다. Auto는 메모리 SPD 데이터에 따라 메모리 승수를 설정합니다. (기본값: Auto)

(주의 1) 이 항목은 이 기능을 지원하는 CPU를 설치한 경우에만 표시됩니다. Intel® CPU의 고유 기능에 대한 자세한 정보는 Intel 웹 사이트를 방문하십시오.
(주의 2) 이 항목은 이 기능을 지원하는 CPU와 메모리 모듈을 설치한 경우에만 표시됩니다.
Memory Odd Ratio (100/133 or 200/266)
Enabled(사용)로 설정하면 QcN이 ODD 주파수로 실행할 수 있습니다. (기본값: Auto)

Memory Frequency (MHz)
첫 번째 메모리 주파수 값을 사용 중인 메모리의 기본 작동 주파수이고, 두 번째는 System Memory Multiplier 설정에 따라 자동으로 조정된 메모리 주파수입니다.

Advanced Memory Settings (고급 메모리 설정)
Extreme Memory Profile (X.M.P.) (주의), System Memory Multiplier, Memory Odd Ratio(100/133 or 200/266), Memory Frequency(MHz)
위의 설정은 Advanced Frequency Settings 메뉴의 동일 항목 하의 설정과 동기화됩니다.

Memory Boot Mode (주의)
메모리 감지 및 트레이닝 방법을 제공합니다.
- Auto: BIOS가 이 설정을 자동으로 구성합니다. (기본값)
- Normal: BIOS가 자동으로 메모리 학습을 수행합니다. 시스템이 불안정해지거나 부팅할 수 없는 상태가 되는 경우, CMOS 값을 지우고 보드를 기본값으로 초기화하는 방법을 시도해보십시오. (CMOS 값을 지우는 방법은 제1장의 배터리/CMOS 점퍼 지우기 지침을 참조하십시오.)
- Enable Fast Boot: 특정 기준에서 메모리 감지 및 학습을 건너뛰어 메모리를 더욱 빠르게 부팅합니다.
- Disable Fast Boot: 부팅할 때마다 메모리를 감지하고 학습합니다.

Memory Enhancement Settings
다음과 같은 몇가지 메모리 성능 향상을 제공합니다. 기본(기본 성능), OC 모드 해제, 안정성 향상, 성능 향상. (기본값: Normal)

Memory Timing Mode

Profile DDR Voltage
비-XMP 메모리 모듈 또는 Extreme Memory Profile (X.M.P.)를 Disabled으로 설정하면 이 값은 메모리 사양에 따라 표시됩니다. Extreme Memory Profile (X.M.P.)을 Profile1 또는 Profile2로 설정하면 이 값은 XMP 메모리에 있는 SPD 데이터에 따라 표시됩니다.

Memory Multiplier Tweaker
다른 메모리 레벨을 자동으로 미세하게 조정합니다. (기본값: Auto)

Channel Interleaving
메모리 채널 인터리빙을 사용하도록 또는 사용하지 않도록 설정합니다. Enabled로 설정하면 시스템이 메모리의 다른 채널에 동시에 액세스하여 메모리 성능과 안정성을 높일 수 있습니다. Auto를 선택하면 BIOS가 이 설정을 자동으로 구성합니다. (기본값: Auto)

Rank Interleaving
메모리 채널 인터리빙 사용 여부를 설정합니다. Enabled로 설정하면 시스템이 메모리의 다른 순위에 동시에 액세스하여 메모리 성능과 안정성을 높일 수 있습니다. Auto를 선택하면 BIOS가 이 설정을 자동으로 구성합니다. (기본값: Auto)

(주의) 이 항목은 이 기능을 지원하는 CPU와 메모리 모듈을 설치한 경우에만 표시됩니다.
Channel A/B Memory Sub Timings (채널 A/B 메모리 하위 타이밍)

Advanced Voltage Settings (고급 전압 설정)
Advanced Power Settings (고급 전원 설정)
CPU Vcore Loadline Calibration
CPU Vcore 전압에 대한 Load-Line Calibration(로드 라인 보정)을 구성할 수 있습니다. 높은 수준을 선택하면 BIOS가 부하가 높을 때 CPU Vcore 전압이 좀 더 일관성이 있습니다. Auto 은 BIOS가 이 설정을 자동으로 구성하고 다음 전압을 Intel 규격에 맞게 설정합니다.(기본값: Auto)
VAXG Loadline Calibration
CPU VAXG 전압에 대한 Load-Line Calibration(로드 라인 보정)을 구성할 수 있습니다. 높은 수준을 선택하면 BIOS가 부하가 높을 때 CPU VAXG 전압이 좀 더 일관성이 있습니다. Auto 은 BIOS가 이 설정을 자동으로 구성하고 다음 전압을 Intel 규격에 맞게 설정합니다.(기본값: Auto)

CPU Core Voltage Control (CPU 코어 전압 제어)
이 섹션은 CPU 전압 제어 옵션을 제공합니다.

Chipset Voltage Control (칩셋 전압 제어)
이 섹션은 집업 전압 제어 옵션을 제공합니다.

DRAM Voltage Control (DRAM 전압 제어)
이 섹션은 메모리 전압 제어 옵션을 제공합니다.

PC Health Status (PC 작동 상태)
Reset Case Open Status
 Resets the previous case open event and clears the status flag.

Case Open
Set the Current Case Open Status to Enabled.

CPU Vcore/CPU VCCSA/DRAM 채널 A/B 전압/+3.3V/+5V/+12V/CPU VAXG
현재 시스템 전압을 표시합니다.

Miscellaneous Settings (기타 설정)
Max Link Speed
Set the maximum link speed for the PCI Express slot.

3DMark01 Enhancement
Enable or disable 3DMark01 benchmark enhancement for legacy systems.
Smart Fan 5 Settings (Smart Fan 5 설정)

- Monitor
 모니터링할 대상을 선택하고 추가로 다른 항목을 조정할 수 있습니다. (기본값: CPU 팬)

- Fan Speed Control
 팬 속도 제어 기능의 사용 여부를 결정하고 팬 속도를 조절할 수 있습니다.
 - Normal: 팬이 온도에 따라 각기 다른 속도로 작동할 수 있습니다. 시스템 요구 사항에 따라 시스템 정보 뷰어를 사용하여 팬 속도를 조정할 수 있습니다. (기본값)
 - Silent: 팬이 저속으로 작동할 수 있습니다.
 - Full Speed: 팬을 최고 속도로 작동할 수 있습니다.

- Fan Control Use Temperature Input
 팬 속도 제어에 사용할 기준 온도를 선택할 수 있습니다.

- Temperature Interval
 팬 속도를 변경할 온도 간격을 선택할 수 있습니다.

- Fan Control Mode
 - Auto: BIOS가 자동으로 설치된 팬 유형을 감지하도록 하여 최적의 제어 모드를 설정합니다. (기본값)
 - Voltage: Voltage 모드는 3핀 팬용으로 권장됩니다.
 - PWM: PWM 모드는 4핀 팬용으로 권장됩니다.

- Temperature
 선택한 대상 영역의 현재 온도를 표시합니다.

- Fan Speed
 현재 팬의 팬 속도를 표시합니다.

- Temperature Warning Control
 온도의 경고 임계값을 설정합니다. 온도가 임계값을 초과하면 BIOS가 경고음을 낼니다.
 옵션은: Disabled(기본값), 60°C/140°F, 70°C/158°F, 80°C/176°F, 90°C/194°F.

- Fan Fail Warning
 팬이 연결되지 않거나 고장날 경우 시스템에서 경고 신호음을 낼니다. 이 경우 팬 상태나 팬 연결을 확인하십시오. (기본값: Disabled)
이 섹션에서는 메인보드 모델 및 BIOS 버전 정보를 제공합니다. 또한 BIOS에 사용할 기본 언어를 선택하고 시스템 시간을 수동으로 설정할 수 있습니다.

Access Level
사용하는 비밀번호 보호 유형에 따라 현재 액세스 레벨을 표시합니다. (비밀번호를 설정하지 않으면 기본 값은 Administrator 입니다.) 관리자 레벨은 모든 BIOS 설정을 변경할 수 있으며, 사용자 레벨은 전체가 아닌 일부 BIOS 설정을 변경할 수 있습니다.

System Language
BIOS에서 사용할 기본 언어를 선택합니다.

System Date
시스템 날짜를 설정합니다. 날짜 형식은 요일(읽기 전용), 월, 일, 년도입니다. <Enter>를 눌러 월, 일, 년도 필드를 전환하고 <Page Up> 또는 <Page Down> 키로 값을 설정합니다.

System Time
시스템 시간을 설정합니다. 시간 형식은 시, 분, 초입니다. 예를 들어, 오후 1시는 13:00:00입니다. <Enter>를 눌러 시간, 분, 초 필드를 전환하고 <Page Up> 또는 <Page Down> 키로 값을 설정합니다.
2-4 BIOS

- 28 -

☞ Bootup NumLock State
POST 후에 키보드의 숫자 키패드에 있는 Numlock 기능 사용 여부를 정합니다. (기본값: On)

☞ Security Option
시스템이 부팅할 때마다 암호가 필요하거나 아니면 BIOS 셋업으로 들어갈 필요가 없다면을 지정합니다. 이 항목을 구성한 후 Administrator Password/User Password 항목에서 비밀번호를 설정하십시오.

Setup 비밀번호는 BIOS 설정 프로그램에 들어갈 때만 필요합니다. (기본값: On)

System 시스템을 부팅할 때 및 BIOS 설정 프로그램에 들어갈 때 비밀번호가 필요합니다. (기본값: On)

☞ Full Screen LOGO Show
시스템이 시작할 때 GIGABYTE 로고를 표시할지를 결정할 수 있습니다. Disabled는 시스템이 시작할 때 GIGABYTE 로고를 건너 뛴다. (기본값: Enabled)

☞ Boot Option Priorities
사용 가능한 장치 중에서 전체적인 부팅 순서를 지정합니다. GPT 포맷을 지원하는 이동식 스토리지 장치의 경우 부팅 장치 목록에 "UEFI:" 문자열이 붙는 장치를 선택하십시오. GPT 포맷을 지원하는 운영 체제에서 부팅하려면 "UEFI:" 문자열이 부팅을 위해 붙은 장치를 선택하십시오. 또는 Windows 7 64 비트와 같이 GPT 포맷을 지원하는 운영 체제에서 설치하고자 하는 경우, Windows 7 64 비트 설치 디스크가 포함된 광학 드라이브에서 "UEFI:" 문자열이 부팅을 위해 붙어 있는 것을 선택하십시오.

☞ Hard Drive/CD/DVD ROM Drive/Floppy Drive/Network Device BBS Priorities
하드 드라이브, 광 드라이브, 플로피 디스크 드라이브, LAN 기능으로 부팅을 지원하는 장치 등과 같은 전용 장치 유형에 대한 부팅 순서를 지정합니다. 이 항목에서 <Enter> 키를 눌러 연결된 같은 유형의 장치를 표시하는 하위 메뉴로 갑니다. 이 항목은 이러한 유형의 장치가 최소한 개 설치되어 있는 경우에만 표시됩니다.

☞ Fast Boot
운영 체제 부팅 시간을 단축해주는 빠른 부팅 옵션의 사용 여부를 설정합니다. Ultra Fast 옵션을 이용하면 부팅 속도를 최대한 줄일 수 있습니다. (기본값: Disabled)
SATA Support

- All Sata Devices: 모든 SATA 장치가 운영 체제에서 및 POST 중에도 계속 가능합니다. (기본값)
- Last Boot HDD Only: 이전 부팅 드라이브만 제외하고 모든 SATA 장치를 사용 안 함으로 설정한 뒤 OS 부팅 프로세스가 완료됩니다.

이 항목은 Fast Boot이 Enabled 또는 Ultra Fast로 설정된 경우에만 구성할 수 있습니다.

VGA Support

사용자가 부팅할 운영 체제의 종류를 선택할 수 있습니다.

- Auto: 레거시 옵션 ROM만 사용하기로 설정합니다.
- EFI Driver: EFI 옵션 ROM을 사용하기로 설정합니다. (기본값)

이 항목은 Fast Boot이 Enabled 또는 Ultra Fast로 설정된 경우에만 구성할 수 있습니다.

USB Support

- Disabled: 모든 USB 장치를 사용 안 함으로 설정한 다음 OS 부팅 프로세스를 완료합니다.
- Full Initial: 모든 USB 장치가 운영 체제에서 및 POST 중 제 기능을 유지합니다.
- Partial Initial: OS 부팅 과정이 완료되기 전까지 일부 USB 장치를 사용 안 함으로 설정합니다. (기본값)

이 항목은 Fast Boot이 Enabled으로 설정된 경우에만 구성할 수 있습니다. 이 기능은 Fast Boot이 Ultra Fast로 설정된 경우는 사용되지 않습니다.

PS2 Devices Support

- Disabled: 모든 PS/2 장치를 사용 안 함으로 설정한 다음 OS 부팅 프로세스를 완료합니다.
- Enabled: 모든 PS/2 장치가 운영 체제에서 및 POST 중 제 기능을 유지합니다. (기본값)

이 항목은 Fast Boot이 Enabled으로 설정된 경우에만 구성할 수 있습니다. 이 기능은 Fast Boot이 Ultra Fast로 설정된 경우는 사용되지 않습니다.

NetWork Stack Driver Support

- Disabled: 네트워크에서 부팅을 사용 안 함으로 설정합니다. (기본값)
- Enabled: 네트워크로부터의 부팅을 사용하기로 설정합니다.

이 항목은 Fast Boot이 Enabled 또는 Ultra Fast로 설정된 경우에만 구성할 수 있습니다.

Next Boot After AC Power Loss

- Normal Boot: AC 전원 복귀에 맞춰 일반 부팅을 사용하기로 설정합니다. (기본값)
- Fast Boot: AC 전원이 복귀된 후에도 Fast Boot 설정을 유지합니다.

이 항목은 Fast Boot이 Enabled 또는 Ultra Fast로 설정된 경우에만 구성할 수 있습니다.

Mouse Speed

마우스 커서 이동 속도를 설정할 수 있습니다. (기본값: 1 X)

Windows 8/10 Features

설치할 운영 체제 종류를 선택할 수 있습니다. (기본값: Other OS)

CSM Support

레거시 PC 부트 프로세스를 지원하는 UEFI CSM (호환성 지원 모듈)의 사용 여부를 설정합니다.

- Enabled: UEFI CSM을 사용하도록 설정합니다. (기본값)
- Disabled: UEFI CSM을 사용 안 함으로 설정하고 UEFI BIOS 부팅 프로세스만 지원합니다.

이 항목은 Windows 8/10 Features가 Windows 8/10 or Windows 8/10 WHQL로 설정되어 있는 경우에만 구성할 수 있습니다.
LAN PXE Boot Option ROM
LAN 컨트롤러에 대한 레거시 옵션 ROM 활성화 여부를 선택할 수 있습니다. (기본값: Disabled)
이 항목은 CSM Support가 Enabled로 설정되어 있을 때만 구성할 수 있습니다.

Storage Boot Option Control
저장장치 컨트롤러에 대해 UEFI 또는 레거시 옵션 ROM을 사용으로 설정할 것인지 여부를 선택할 수 있습니다.
- Do not launch 옵션 ROM을 사용안함으로 설정합니다.
- Legacy 레거시 옵션 ROM만 사용하기로 설정합니다. (기본값)
- UEFI UEFI 옵션 ROM만 사용하도록 설정합니다.
이 항목은 CSM Support가 Enabled로 설정되어 있을 때만 구성할 수 있습니다.

Other PCI devices
LAN, 저장장치 및 그래픽 컨트롤러가 아닌 PCI 장치 컨트롤러에 대해 UEFI 또는 레거시 옵션 ROM을 사용으로 설정할 것인지 여부를 선택할 수 있습니다.
- Do not launch 옵션 ROM을 사용안함으로 설정합니다.
- Legacy 레거시 옵션 ROM만 사용하기로 설정합니다.
- UEFI UEFI 옵션 ROM만 사용하도록 설정합니다. (기본값)
이 항목은 CSM Support가 Enabled로 설정되어 있을 때만 구성할 수 있습니다.

Administrator Password
관리자 암호를 구성할 수 있습니다. 이 항목에서 <Enter> 키를 누르고 암호를 입력한 후 <Enter> 키를 눌러야 합니다. 암호를 입력하고 <Enter> 키를 누르십시오. 시스템이 시작될 때와 BIOS를 설치할 때 관리자 암호(또는 사용자 암호)를 입력해야 합니다. 사용자 암호와는 달리 관리자 암호는 모든 BIOS 설정을 변경할 수 있습니다.

User Password
사용자 암호를 구성할 수 있습니다. 이 항목에서 <Enter> 키를 누르고 암호를 입력한 후 <Enter> 키를 누릅니다. 암호를 입력하고 <Enter> 키를 누르십시오. 시스템이 시작될 때와 BIOS를 설치할 때 관리자 암호(또는 사용자 암호)를 입력해야 합니다. 그러나 사용자 암호는 전체가 아닌 일부 BIOS 설정만 변경할 수 있습니다.

암호를 지우려면 암호 항목을 <Enter> 키로 누르고 암호를 입력하는 메시지가 나타나면 정확한 암호를 먼저 입력하십시오. 새 암호가 표시되면 아무 것도 입력하지 말고 <Enter> 키를 누르십시오. <Enter> 키를 한 번 더 눌러 확인하십시오.
주의: 사용자 비밀번호를 설정하기 전에, 먼저 관리자 비밀번호를 설정하십시오.

Secure Boot
Secure Boot을 사용 또는 사용 안 함으로 설정하고 관련 설정을 구성할 수 있습니다.
2-5 Peripherals

- Initial Display Output
 - PCI Express графический контроллер или встроенная графика, установленная в системе, определяет начальное отображение на мониторе.
 - IGFX: Встроенный графический контроллер будет устанавливать вторичное отображение.
 - PCIe 1 Slot: Графический контроллер PCIe16 слота будет устанавливать вторичное отображение.
 - PCIe 2 Slot: Графический контроллер PCIe4 слота будет устанавливать вторичное отображение.

- OnBoard LAN Controller
 - Встроенная LAN-функция может быть использована или отключена.
 - (По умолчанию: Enabled)
 - Если встроенный сетевой адаптер не используется, а вместо этого устанавливается тайп-на-экспандер, этот параметр устанавливается в Disabled (Отключено).

- EZ RAID
 - Быстрое создание RAID-массивов.
 - Инструкции по конфигурации RAID-массивов см. в главе 3, "Создание RAID-массивов".

- Ambient LED
 - Встроенный светодиодный подсветкой может быть включен или выключен.
 - (По умолчанию: On)

- Intel Platform Trust Technology (PTT)
 - Использование технологии PTT Intel.
 - (По умолчанию: Disabled)

- OffBoard SATA Controller Configuration (OffBoard SATA контроллер конфигурации)
 - Информация о M.2 PCIe SSD, установленном на плате.

- Trusted Computing (Mutual Trust Architecture)
 - Настройка использования модуля TPM (Trusted Platform Module) для обеспечения безопасности.
Super IO Configuration (Super IO 구성)

- Serial Port
 온보드 직렬 포트 사용 여부를 설정합니다. (기본값: Enabled)

- Paralle Port
 병렬 포트 기능 사용 여부를 설정합니다. (기본값: Enabled)

Intel(R) Bios Guard Technology (Intel(R) Bios 가드 기술)
악의적인 공격으로부터 BIOS를 보호하는 Intel® BIOS 가드 기능의 사용 여부를 설정합니다.

Network Stack Configuration (네트워크 스택 구성)

- Network Stack
 Windows 배포 서비스 서버에서 OS를 설치하는 것과 같이, GPT 포맷 OS를 설치하기 위해 네트워크를 통한 부팅을 비활성화하거나 활성화합니다. (기본값: Disabled)

- Ipv4 PXE Support
 IPv4 PXE 지원을 활성화하거나 비활성화합니다. 이 항목은 Network Stack 을 사용하기로 설정한 경우에만 구성할 수 있습니다.

- Ipv4 HTTP Support
 IPv4에 대한 HTTP 부팅 지원을 사용 또는 사용 안 함으로 설정합니다. 이 항목은 Network Stack 을 사용하기로 설정한 경우에만 구성할 수 있습니다.

- Ipv6 PXE Support
 IPv6 PXE 지원을 활성화하거나 비활성화합니다. 이 항목은 Network Stack 을 사용하기로 설정한 경우에만 구성할 수 있습니다.

- Ipv6 HTTP Support
 IPv6에 대한 HTTP 부팅 지원을 사용 또는 사용 안 함으로 설정합니다. 이 항목은 Network Stack 을 사용하기로 설정한 경우에만 구성할 수 있습니다.

- PXE boot wait time
 <Esc>를 놓려 PXE 부팅을 중단하기 전까지 대기하는 시간을 구성할 수 있습니다. 이 항목은 Network Stack 을 사용하기로 설정한 경우에만 구성할 수 있습니다. (기본값: 0)

- Media detect count
 미디어 존재를 확인할 횟수를 설정할 수 있습니다. 이 항목은 Network Stack 을 사용하기로 설정한 경우에만 구성할 수 있습니다. (기본값: 1)

NVMe Configuration (NVMe 구성)
설치된 경우 M.2 NVME PCIe SSD에 대한 정보를 표시합니다.

USB Configuration (USB 구성)

- Legacy USB Support
 MS-DOS에서 USB 키보드/마우스를 사용할 수 있습니다. (기본값: Enabled)

- XHCI Hand-off
 XHCI Hand-off를 지원하지 않는 운영 체제에 대한 XHCI Hand-off 기능 사용 여부를 결정합니다. (기본값: Disabled)

- USB Mass Storage Driver Support
 USB 저장 장치 지원의 사용 여부를 설정합니다. (기본값: Enabled)
Port 60/64 Emulation
I/O 포트 64h 및 60h의 에뮬레이션 사용 여부를 설정합니다. MS-DOS 또는 USB 장치를 기본적으로 지원하지 않는 운영 체제에서 USB 키보드/마우스에 대한 전체 레거시 지원을 위해 사용해야 합니다. (기본값: Enabled)

Mass Storage Devices
연결된 USB 대용량 장치 목록을 표시합니다. 이 항목은 USB 저장소 장치를 설치한 경우에만 표시됩니다.

SATA And RST Configuration (SATA 및 RST 구성)

SATA Controller(s)
통합 SATA 컨트롤러 사용 여부를 설정합니다. (기본값: Enabled)

SATA Mode Selection
칩셋에 통합된 SATA 컨트롤러에 대한 RAID 사용 여부를 설정하거나 SATA 컨트롤러를 AHCI 모드로 구성합니다.
- Intel RST Premium With Intel Optane System AccelerationSATA 컨트롤러에 대해 RAID를 사용하도록 설정합니다.
- AHCI SATA 컨트롤러를 AHCI 모드로 구성합니다. AHCI(고급 호스트 컨트롤러 인터페이스)는 저장 장치 드라이버가 고유 명령 대기열 및 핫 플러그와 같은 고급 직렬 ATA 기능을 사용하도록 설정할 수 있게 하는 인터페이스 규격입니다. (기본값)

Aggressive LPM Support
칩셋 SATA 컨트롤러에 대한 절전 기능, ALPM(Aggressive Link Power Management)을 사용 또는 사용 안 함으로 설정합니다. (기본값: Enabled)

Port 0/1/2/3/4/5
각 SATA 포트 사용 여부를 설정합니다. (기본값: Enabled)

Hot plug
각 SATA 포트에 대해 핫 플러그 성능 사용 여부를 설정합니다. (기본값: Disabled)

Configure as eSATA
외부 SATA 장치 지원을 활성화 또는 비활성화합니다.
2-6 Chipset

- VT-d (주의)
 Directed I/O에 대한 Intel® Virtualization Technology 사용 여부를 설정합니다. (기본값: Enabled)

- Internal Graphics
 온보드 그래픽 기능을 사용 또는 사용하지 않도록 설정합니다. (기본값: Auto)

- DVMT Pre-Allocated
 온보드 그래픽 메모리 크기를 설정할 수 있습니다. 옵션은: 32M~1024M. (기본값: 32M)

- DVMT Total Gfx Mem
 온보드 그래픽의 DVMT 메모리 크기를 할당할 수 있습니다. 옵션은: 128M, 256M, MAX. (기본값: 256M)

- Audio Controller
 온보드 오디오 기능을 사용 또는 사용하지 않도록 설정합니다. (기본값: Enabled)
 온보드 오디오를 사용하는 대신 타사 추가 오디오 카드를 설치하려면 이 항목을 Disabled로 설정하십시오.

- High Precision Timer
 운영 체제에 대해 HPET(고정밀 이벤트 타이머) 사용 여부를 설정합니다. (기본값: Enabled)

- IOAPIC 24-119 Entries
 이 기능을 사용 또는 사용 안 함으로 설정합니다. (기본값: Enabled)

(주의) 이 항목은 이 기능을 지원하는 CPU를 설치한 경우에만 표시됩니다. Intel® CPU의 고유 기능에 대한 자세한 정보는 Intel 웹 사이트를 방문하십시오.
2-7 Power

Platform Power Management
액티브 상태 전원 관리 기능(ASPM)을 활성화 또는 비활성화합니다. (기본값: Disabled)

PEG ASPM
CPU PEG 버스에 연결된 장치에 대해 ASPM 모드를 구성할 수 있습니다. 이 항목은 Platform Power Management이 Enabled로 설정된 경우에만 구성할 수 있습니다. (기본값: Enabled)

PCH ASPM
칩셋의 PCIe Express 버스에 연결된 장치에 대해 ASPM 모드를 구성할 수 있습니다. 이 항목은 Platform Power Management이 Enabled로 설정된 경우에만 구성할 수 있습니다. (기본값: Enabled)

DMI ASPM
DMI 링크의 CPU측과 칩셋 측에 대해 ASPM 모드를 구성할 수 있습니다. 이 항목은 Platform Power Management가 Enabled로 설정된 경우에만 구성할 수 있습니다. (기본값: Enabled)

AC BACK
AC전원공급이 비정상적으로 중단된 후 재 인가된 후 시스템 상태를 결정합니다.
- Always Off: AC전원이 다시 들어와도 시스템이 꺼진 상태로 있습니다. (기본값)
- Always On: AC전원이 다시 들어오면 시스템이 꺼집니다.
- Memory: AC전원이 복구되면 시스템이 마지막으로 알려진 활성 상태로 돌아갑니다.

Power On By Keyboard
시스템이 PS/2 키보드 웨이크-업 이벤트에 의해 커질 수 있도록 합니다.
주의: 이 기능을 사용하려면 +5VSB lead에 적어도 1A를 공급하는 ATX 전원 공급 장치가 필요합니다.
- Disabled: 이 기능을 사용 안 함으로 설정합니다. (기본값)
- Any Key: 아무 키나 누르면 시스템이 커집니다.
- Password: 1-5자의 비밀번호를 설정하여 시스템 전원을 켜는 데 사용합니다.
Power On Password
Power On By Keyboard가 Password로 설정되어 있으면 비밀번호를 설정합니다.
이 항목을 <Enter> 키로 누르고 최대 5자로 암호를 설정한 후 <Enter> 키를 늘려 적용하시십시오.
시스템을 켜면 암호를 입력하고 <Enter> 키를 누르십시오.
주의: 암호를 취소하려면 이 항목을 <Enter> 키로 누르십시오. 암호 설정을 지우려면 암호를 몇 번 세시가 나타났을 때 암호를 입력하지 않고 <Enter> 키를 다시 누르십시오.

Power On By Mouse
시스템이 PS/2 마우스 웨이크업 이벤트에 의해 켜질 수 있도록 합니다.
주의: 이 기능을 사용하려면 +5VSB lead에 적어도 1A를 공급하는 ATX 전원 공급 장치가 필요합니다.

ErP
시스템이 S5(종료) 상태에서 최소 전력을 사용하게 할 것인지 결정합니다. (기본값: Disabled)
주의: 이 항목을 Enabled로 설정하면 다음의 걸이 기능을 사용할 수 없습니다: 알람으로 재부팅, PME 이벤트 다시 시작, 마우스로 전원 켜기, 키보드로 전원 켜기 및 Wake-on-LAN 기능입니다.

Soft-Off by PWR-BTNN
전원 버튼을 사용하여 MS-DOS 모드에서 컴퓨터를 꺼는 방법을 구성합니다.
Instant-Off: 전원 버튼을 누르면 시스템이 즉시 꺼집니다. (기본값)
Delay 4 Sec.: 전원 버튼을 4초 동안 누르면 시스템이 꺼집니다. 전원 버튼을 4초 미만 동안 누르면 시스템이 일시 중단 모드로 들어갑니다.

Resume by Alarm
원하는 시각에 시스템 전원을 켜지는 방법을 결정합니다. (기본값: Disabled)
주의: 이 기능을 사용할 때는 부적절한 운영 체제 종료 또는 AC 전원 제거를 피하십시오.

RC6 (Render Standby)
전력 소모량을 줄이기 위해 온보드 그래픽 대기 모드 상태 설정 여부를 결정할 수 있습니다. (기본값: Enabled)
2-8 Save & Exit

☞ Save & Exit Setup
이 항목에서 <Enter> 키를 누른 다음 Yes를 선택합니다. 변경 내용이 CMOS에 저장되고 BIOS 셋업 프로그램이 종료됩니다. BIOS 설치 주 메뉴로 돌아가려면 No 또는 <Esc> 키를 누릅니다.

☞ Exit Without Saving
이 항목에서 <Enter> 키를 누른 다음 Yes를 선택합니다. BIOS 셋업에서 변경한 내용이 CMOS에 저장되지 않고 BIOS 셋업이 종료됩니다. BIOS 설치 주 메뉴로 돌아가려면 No 또는 <Esc> 키를 누릅니다.

☞ Load Optimized Defaults
최적의 BIOS 기본 설정값을 로드하려면 이 항목을 <Enter> 키로 누른 후 Yes 키를 누릅니다. BIOS 기본 설정값은 시스템이 최적 상태로 작동하는 데 도움이 됩니다. BIOS를 업데이트하거나 CMOS 값을 삭제한 후에는 항상 최적화된 기본값을 로드하십시오.

☞ Boot Override
선택하면 장치를 즉시 부팅합니다. 선택한 장치에서 <Enter>를 눌러 Yes를 선택하여 확인합니다. 시스템이 자동으로 다시 시작하고 장치에서 부팅합니다.

☞ Save Profiles
이 기능은 현재 BIOS 설정을 프로필로 저장할 수 있게 합니다. 최대 8개 프로파일을 만드는데 Setup Profile 1~Setup Profile 8로 저장할 수 있습니다. <Enter> 키를 눌러 완료합니다. 또는 Select File in HDD/FDD/USB를 선택하여 프로필을 저장장치에 저장할 수 있습니다.

☞ Load Profiles
시스템이 불안정해지고 사용자가 BIOS 기본 설정을 로드한 경우 이 기능을 사용하여 BIOS 설정을 다시 구성해야 하는 불편을 겪지 않고 이전에 만든 프로파일로부터 BIOS 설정을 로드할 수 있습니다. 로드할 프로필을 먼저 선택하고 <Enter> 키를 눌러 완료하십시오. Select File in HDD/FDD/USB를 선택하여 저장 장치에 있는 정상 작동된 프로파일 설정으로 되돌리거나 BIOS에서 자동으로 만든 프로필을 로드할 수 있습니다.
제3장 부록

3-1 RAID 세트 구성

RAID 레벨

<table>
<thead>
<tr>
<th>RAID</th>
<th>RAID 0</th>
<th>RAID 1</th>
<th>RAID 5</th>
<th>RAID 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>하드 드라이버 최대 수</td>
<td>≥2</td>
<td>2</td>
<td>≥3</td>
<td>4</td>
</tr>
<tr>
<td>어레이 용량</td>
<td>하드 드라이버 수</td>
<td>가공 작은 드라이브 크기</td>
<td>가공 작은 드라이브 크기</td>
<td>(하드 드라이브 수-1)* 가공 작은 드라이브 크기</td>
</tr>
<tr>
<td></td>
<td>아니요</td>
<td>예</td>
<td>예</td>
<td>예</td>
</tr>
</tbody>
</table>

시작하기 전에 다음 항목을 준비하십시오:
- 적어도 두 개의 SATA 하드 드라이브 또는 SSD ([주의 1](#)) (최적의 성능을 보장하려면 모델과 용량이 같은 것으로 하드 드라이브 두 개를 사용하는 것이 좋습니다.) ([주의 2](#))
- Windows 설치 디스크
- 메인보드 드라이버 디스크
- USB 썸 드라이브 (Thumb drive).

SATA 컨트롤러 구성

A. 하드 드라이브 설정하기

하드 드라이브/SSD를 마더보드의 Intel® Chipset 제어 커넥터(SATA3 0-5 또는 M2A_32G)에 설치합니다. 그 다음에 전원 공급 장치의 전원 커넥터를 하드 드라이브에 연결하십시오.

B. BIOS 셋업에서 SATA 컨트롤러 모드 구성하기

시스템 BIOS 셋업에서 SATA 컨트롤러 모드를 반드시 올바르게 구성하십시오.

단계:
1. 컴퓨터를 켜고 POST(전원 구동 시 자체 테스트) 중에 <Delete> 키를 눌러 BIOS 설정으로 갑니다. Peripherals\SATA And RST Configuration으로 이동하여 SATA Controller(s)가 사용으로 설정되어 있는지 확인하십시오. RAID를 만들려면 SATA Mode Selection을 Intel RST Premium With Intel Optane System Acceleration으로 설정합니다. 그런 다음 설정을 저장하고 컴퓨터를 다시 시작합니다.
2. EZ RAID 기능을 사용하려면 "C-1"의 단계를 따릅니다. UEFI RAID를 구성하려면 "C-2"의 단계를 따릅니다. 레거시 RAID ROM에 들어가려면 "C-3"에서 자세한 정보를 참조하십시오. 마지막으로 설정을 저장하고 BIOS 설치를 종료합니다.

이 절에서 설명한 BIOS 셋업 메뉴는 사용자 메인보드의 설정과 다를 수 있습니다. 실제BIOS 설정 메뉴 음성은 사용자 메인보드와 BIOS 버전에 따라 다릅니다.

C-1. EZ RAID 사용

GIGABYTE 마더보드에서는 EZ RAID 기능을 제공하여 간소화된 단계를 따라 신속하게 RAID 배열을 구성할 수 있습니다.

단계:
1. 컴퓨터를 다시 시작한 다음, BIOS 설치로 들어가 Peripherals로 이동합니다. EZ RAID 항목에서 <Enter> 를 누릅니다. Type 템에서 RAID 유형을 선택하고 <Enter>를 누릅니다.
2. Mode 템으로 이동하여 RAID 레벨을 선택합니다. RAID 0, RAID 1, RAID 10, RAID 5 등 네 개의 RAID 레벨이 지원됩니다(사용할 수 있는 선택 항목은 설치 중인 하드 드라이브 수에 따라 다릅니다). 그런 다음 <Enter>를 눌러 Create 템으로 이동합니다. Proceed를 클릭하여 시작합니다.
3. 이 작업이 완료되면 Intel(R) Rapid Storage Technology 화면으로 되돌아가게 됩니다. RAID Volumes 아래에서 새 RAID 볼륨을 확인할 수 있습니다. 자세한 내용을 보려면 볼륨에서 <Enter> 키를 눌러 RAID 레벨 관련 정보, 스타드 블록 크기, 어레이 이름, 어레이 용량 등을 확인하십시오.

(주의 1) M.2 PCIe SSD는 M.2 SATA SSD 또는 SATA 하드 드라이브에서 RAID 세트를 생성하는 데 사용할 수 없습니다.
(주의 2) M.2 및 SATA 커넥터의 설치 위치는 "1-7 내부 커넥터"를 참조하십시오.
C-2. UEFI RAID 구성
Windows 10/8.1 64-비트만 UEFI RAID 구성이 지원합니다.

단계:
1. BIOS 설치에서 BIOS로 이동하여 Windows 8/10 Features를 Windows 8/10으로, CSM Support를 Disabled로 설정합니다. 변경 내용을 저장하고 BIOS 셋업을 종료합니다.
2. 시스템을 재부팅한 다음 BIOS 셋업으로 다시 들어갑니다. 그런 다음 Peripherals\Intel(R) Rapid Storage Technology 하위 메뉴로 들어갑니다.
3. Intel(R) Rapid Storage Technology 메뉴에서 Create RAID Volume에 있는 <Enter> 키를 눌러서 Create RAID Volume 화면으로 들어갑니다. Name 항목에 1자에서 16자(특수 문자는 사용할 수 없음) 사이의 볼륨 이름을 입력하고 <Enter> 키를 누릅니다. RAID 레벨을 선택합니다. RAID 0, RAID 1, RAID 10, RAID 5 등 네 개의 RAID 레벨이 지원됩니다(사용할 수 있는 선택 항목은 설치 중인 하드 드라이브 수에 따라 다릅니다). 그런 다음 아래로 화살표 키를 사용해서 Select Disks로 이동합니다.
4. Select Disks 항목에서 RAID 배열에 포함시킬 하드 드라이브를 선택합니다. 선택한 하드 드라이브에서 <Space> 키를 누릅니다(선택한 하드 드라이브는 "X"로 표시됩니다). 스타트라이프 복록 크기를 설정합니다. 스타트라이프 복록 크기는 4 KB에서 128 KB로 설정할 수 있습니다. 스타트라이프 복록 크기를 선택했으면 볼륨 용량을 설정합니다.
5. 용량을 설정한 다음 Create Volume으로 이동해서 <Enter> 키를 눌러서 시작합니다.
6. 이 작업이 완료되면 Intel(R) Rapid Storage Technology 화면으로 되돌아가게 됩니다. RAID Volumes 아래에서 새 RAID 볼륨을 확인할 수 있습니다. 자세한 내용을 보려면 볼륨에서 <Enter> 키를 눌러 RAID 레벨 관련 정보, 스타트라이프 복록 크기, 어레이 이름, 어레이 용량 등을 확인하십시오.

C-3. 레거시 RAID ROM 구성하기
RAID 배열을 구성하려면 Intel(R) 레거시 RAID BIOS 셋업 유틸리티로 들어가십시오. 비-RAID 구성의 경우 이 단계를 건너뛰고 Windows 운영 체제 설치를 진행하십시오.

단계:
1. BIOS 설치에서 BIOS로 이동하여 CSM Support를 Enabled로, Storage Boot Option Control을 Legacy로 설정합니다. 변경 내용을 저장하고 BIOS 셋업을 종료합니다. POST 메모리 검사가 시작된 후 운영 체제 부팅이 시작되기 전 "Press <Ctrl-I> to enter Configuration Utility"라는 메시지는 나타나지 않습니다.<Ctrl> + <I> 키를 눌러 RAID 구성 유틸리티로 들어갑니다.
2. <Ctrl> + <I> 키를 누르면 MAIN MENU 화면이 표시됩니다. RAID 배열을 만들려면 MAIN MENU에서 Create RAID Volume을 선택하고 <Enter>를 누릅니다.
3. CREATE VOLUME MENU 화면에 들어간 다음 1-16자(특수 문자 제외)의 볼륨 이름을 Name 항목 아래 입력하고 <Enter>를 누릅니다. RAID 레벨을 선택합니다. RAID 0, RAID 1, RAID 10, RAID 5 등 네 개의 RAID 레벨이 지원됩니다(사용할 수 있는 선택 항목은 설치 중인 하드 드라이브 수에 따라 다릅니다). <Enter> 키를 눌러 계속 진행합니다.
4. Disks 항목에서 RAID 배열에 포함할 하드 드라이브를 선택합니다. 하드 드라이브가 단 두 개 설치되어 있으면 드라이브들이 배열에 자동으로 할당됩니다. 필요한 경우 스타트라이프 복록 크기를 설정합니다. 스타트라이프 복록 크기는 4 KB에서 128 KB로 설정할 수 있습니다. 스타트라이프 복록 크기를 선택했으면 <Enter> 키를 누릅니다.
5. 배열 용량을 입력하고 <Enter> 키를 누릅니다. 끝으로 Create Volume 항목을 <Enter> 키로 눌러 RAID 배열 만들기를 시작합니다. 이 볼륨을 만들지 묻는 메시지가 나타나면 <Y> 키를 눌러 확인하거나 <N> 키를 눌러 취소합니다.
SATA RAID/AHCI 드라이버 및 운영체제 설치
올바른 BIOS 설정이 완료되면 운영체제를 설치할 준비가 되 것입니다.

운영체제 설치하기
일부 운영체제에는 Intel® SATA RAID/AHCI 드라이버가 이미 포함되어 있기 때문에, Windows 설치 과정에서 별도의 RAID/AHCI 드라이버를 설치할 필요가 없습니다. 운영체제를 설치한 후 "Xpress Install"을 사용하여 메인보드 드라이버 디스크에서 필요한 모든 드라이버를 설치하여 시스템 성능 및 호환성을 보장할 것을 권장합니다. 운영체제 설치 중 SATA RAID/AHCI 드라이버를 추가하려면 다음 단계를 참조하십시오.

1. 드라이버 디스크의 \Boot에 있는 IRST 폴더를 사용자의 USB 썸드라이브에 복사합니다.
2. Windows 설치디스크로 부팅하여 표준 OS 설치 단계를 실행합니다. 드라이버를 로드하려고 요청하는 화면이 표시되면, Browse 를 선택하십시오.
3. USB 썸드라이브를 삽입한 다음 드라이버의 위치를 찾아봅니다. 드라이버의 위치는 다음과 같습니다.
 Windows 32비트: \RST\i686py-x86
 Windows 64비트: \RST\i686py-x64
4. 다음과 같은 화면이 표시되면 Intel Chipset SATA RAID Controller를 선택하고 Next 를 클릭하여 드라이버를 로드하고 OS 설치를 계속합니다.

RAID 어레이 구성에 대한 자세한 내용은 GIGABYTE의 웹사이트를 참조하십시오.
3-2 드라이버 설치

• 드라이버를 설치하기 전에 운영 체제를 먼저 설치하십시오. (다음 지시사항은 Windows 10을 예시 운영 체제로 사용합니다.)
• 운영 체제를 설치한 다음, 메인보드 드라이버 디스크를 광학 드라이브에 넣습니다. 화면 상단 우측 가장자리에 나타난 "Tap to choose what happens with this disc" 메시지를 클릭한 다음 "Run Run.exe"를 선택합니다. (또는 내 컴퓨터로 이동해서 광 드라이브를 더블 클릭해서 Run.exe 프로그램을 실행합니다.)

"Xpress Install"이 시스템을 자동으로 스캔한 다음 설치하도록 권장되는 모든 드라이버의 목록을 표시합니다. Xpress Install 버튼을 클릭하면 "Xpress Install"에서 선택한 드라이버를 전부 설치합니다. 또는 화살표 아이콘을 클릭해서 필요한 드라이버를 별도로 설치해도 됩니다.

자세한 소프트웨어 정보는 GIGABYTE 웹사이트를 참조하십시오.
오디오 소프트웨어 구성에 대한 자세한 내용은 GIGABYTE의 웹사이트를 참조하십시오.
규정 선언

규정 공지
이 설명서는 당사의 서면 승인 없이 복사할 수 없으며, 설명서의 내용을 제삼자에게 공개하거나 승인 받지 않은 목적으로 사용할 수 없습니다.
이를 위반하는 경우 형사 처벌을 받습니다. 설명서에 들어 있는 정보는 발간 시점을 기준으로 모든 관계에서 정확한 정보입니다. 그러나 GIGABYTE는 이 텍스트에서 누락 또는 오류에 대한 책임을 가정하지 않습니다. 또한 이 설명서의 정보는 통지 없이 변경될 수 있으며 GIGABYTE의 공약으로 해석되어서는 안됩니다.

환경 보호에 대한 당사의 공약
고효율적인 성능 외에, 모든 GIGABYTE 메인보드는 대부분의 주요한 전 세계 안전 요구 사항은 물론 유해물질 제한(RoHS: Restriction of Certain Hazardous Substances in Electrical and Electronic Equipment) 및 전기 및 전자장비 폐기물(WEEE: Waste Electrical and Electronic Equipment) 환경 지침에 대한 유럽 연합의 규정을 충족합니다. 유해물질이 환경에 배출되는 것을 방지하고 전연 자연의 사용을 최대화하기 위해 GIGABYTE는 사용자가 의무적으로 "수명을 달한" 제품에 들어 있는 물질의 대부분을 재생 및 재사용할 수 있는 방법에 대한 다양한 정보를 제공합니다.

유해 물질 사용 제한 지침
GIGABYTE 제품에는 유해 물질(Cd, Pb, Hg, Cr+6, PBDE 및 PBB)이 들어 있지 않으며 이러한 물질로부터 안전합니다. 구성품 및 부품은 RoHS 조건에 맞추기 위해 주의하여 선택했습니다. 그 밖에 GIGABYTE에서는 국제적으로 금지된 독성 화학물질을 사용하지 않는 제품을 개발하기 위해 계속해서 노력하고 있습니다.

폐 전기전자 제품에 관한 지침
GIGABYTE는 2002/96/EC 전기 및 전자장비 폐기물(WEEE) 지침에 의거하여 적용된 국내법을 충족시키킵니다. WEEE 지침은 전기전자 장치 및 부품의 취급, 수집, 재활용 및 처리 방법을 설명합니다. 지침에 의거하여, 사용한 장비는 표시를 하여 개별적으로 수거하기 위해 해당 제품에 표시된 어깨 기호를 가리킵니다. 그 대신, 이러한 장치는 처리, 수거, 재활용 및 폐기 절차에 따라 폐기하기 위해 해당 폐기물 수거 센터로 보내져야 합니다. 폐기시 폐기물장비의 별도 수거 및 재활용은 전연 자연을 보존하는 데 도움이 되고 폐기물 장비는 건강 및 환경을 보호하는 방식으로 재활용됩니다. 재활용을 위해 폐기물 장비를 폐기하는 장소에 대한 자세한 정보를 알려면, 가까운 관공서, 가정용 쓰레기처리업체 또는 제품을 구입한 판매점에 연락하여 환경적으로 안전한 재활용에 의해 자세히 문의하십시오.
• 전기 전자 제품을 더 이상 사용하지 않을 경우 재활용을 위해 현지 또는 지역의 재활용 센터, "반납" 하십시오.
• "수명이 다 된" 제품에 대한 재사용 또는 재활용 지원이 필요한 경우 제품 사용 설명서에 있는 소비자 보호 센터로 연락하면 당사에서 지원 해드립니다.

끝으로, 해당되는 경우 이 제품의 절전 기능을 이해하고 사용하며, 이 제품의 인도 시 백은 안팎의 포장(배송 포장 포함)을 재활용하고, 다 사용한 배터리를 직접하게 폐기하거나 재활용할 경우 환경 친화적인 조치를 실천해주시기 바랍니다. 여러분의 협조로, 당사는 전기 및 전자장비를 생산하는 데 상당한 양의 전연 자연을 절약하고, "수명이 다 한" 제품의 폐기를 위해 매립토의 사용을 최소화하며, 잔재적으로 유해한 물질이 환경으로 배출되지 않고 적절히 폐기됨으로써 일반적으로 살의 질을 높일 수 있습니다.
• GIGABYTE eSupport
기술적인 내용을 포함한 각종 질문(판매/마케팅)을 문의하시려면 다음 주소로 문의하십시오: http://esupport.gigabyte.com